AD

REPORT NO. 1351

A NON-LINEAR SHOCK WAVE REFLECTION THEORY

by

Ralph E. Shear Ray C. Makino

January 1967

Distribution of this document is unlimited.

U. S. ARMY MATERIEL COMMAND ABERDEEN PROVING GROUND, MARYLAND

21.59155-cyl

Destroy this report when it is no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1351

JANUARY 1967

Distribution of this document is unlimited.

A NON-LINEAR SHOCK WAVE REFLECTION THEORY

Ralph E. Shear Ray C. Makino

Computing Laboratory

RDT&E Project No. 1P014501A14B

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1351

REShear/RCMakino/sjw Aberdeen Proving Ground, Md. January 1967

A NON-LINEAR SHOCK WAVE REFLECTION THEORY

ABSTRACT

A one-dimensional theory of normal reflection of blast waves from walls is given. The method satisfies the initial and boundary conditions of the problem. It is shown how the entire reflected wave zone, including the reflected shock front and the pressure and impulse on the wall, can be calculated.

TABLE OF CONTENTS

																										Pag	. 6
ABSTRACT		•														•	•	•	•	•		•	•			3	
LIST OF SYMBO	LS	•	•		•	•			•		•	•	•	•		•	•	•	•							7	
INTRODUCTION		•			•	•		•	•	•	•		•	•		•	•	•		•					•	11	
FLOW EQUATIONS	S .	•	•	•		•	•		•	•			•	•		•	•		•	•				•	•	18	
SHOCK CONDITION	ons	•	•	•		•		•					•				•	•	•					•		14	
CONSTRAINTS				•			•	•				•	•			•		•	•					•	•	17	
DETERMINATION	OF	RE	FI	ν	TI	01	1]	100	[Al	N			•	•			•		•		•			•	•	19	
REFERENCES .		•				•	•	•							•		•		•				•		•	26	
DISTRIBUTION :	LISI	7																								27	

LIST OF SYMBOLS

* = denotes dimensional quantities

a = a constraint parameter on u

b = a constraint parameter on u

c* = sound velocity in undisturbed air

c* = sound velocity in region traversed by incident shock

$$c_0 = \frac{c *}{c *}$$

c* = sound velocity in region traversed by reflected shock

$$c = \frac{c^*}{c^*_{00}}$$

 E_{oo}^* = specific internal energy of undisturbed air

 E_{\odot}^{*} = specific internal energy in region traversed by incident shock

$$E_{o} = \frac{E_{o}^{*} - E_{oo}^{*}}{c_{oo}^{*2}}$$

E* = specific internal energy in region traversed by reflected shock

$$E = \frac{E^* - E^*_{00}}{c^*_{00}}$$

M* = mass of explosive

 p_{OO}^* = total pressure of undisturbed air

 p_{O}^{*} = total pressure in region traversed by incident shock

$$p_{O} = \frac{p_{O}^{*}}{p_{OO}^{*}}$$

 p^* = total pressure in region traversed by reflected shock

LIST OF SYMBOLS (Contd)

$$p = \frac{p^*}{p^*_{00}}$$

R* = gas constant

 S_{00}^* = specific entropy of undisturbed air

 S_0^* = specific entropy in region traversed by incident shock

$$S_{O} = \frac{S_{O}^{*} - S_{OO}^{*}}{R^{*}}$$

S* = specific entropy in region traversed by reflected shock

$$S = \frac{S* - S*}{R*}$$

t* = time

$$t = (\frac{c * p *}{oo} p *) t*$$

 \mathbf{u}_{Ω}^{*} = particle velocity in region traversed by incident shock

u* = particle velocity in region traversed by reflected shock

$$u = \frac{u^*}{c^*}$$

U* = velocity of reflected shock

$$\Omega = \frac{c_*^{00}}{\Lambda_*}$$

x* = linear distance

$$x = (\frac{p_{00}^*}{c_{00}^{*2} M^*}) x^*$$

γ = specific heat ratio of air

$$\mu = (\frac{\gamma - 1}{\gamma + 1})^{1/2}$$

LIST OF SYMBOLS (Contd)

$$\rho_{\text{OO}}^{\, \bigstar}$$
 = density of undisturbed air

$$\rho_{\,\,\text{O}}^{\,\,\text{*}}\,$$
 = density in region traversed by incident shock

$$\rho_{\circ} = \frac{\gamma \rho_{\circ}^{*}}{\rho_{\circ}^{*}}$$

$$\rho^*$$
 = density in region traversed by reflected shock

$$\rho = \frac{\gamma \rho *}{\rho *}$$

INTRODUCTION

The study of damage to structures by blast waves requires analysis of the normally reflected pressure on the wall. To solve this problem the hydrodynamical equations of flow must be solved in the region between the wall and the reflected shock front. Since the system of non-linear partial differential equations of flow are presently solvable only by numerical methods that, when reliable, are somewhat cumbersome, and the possibility of exact analytical solution is remote, a method that simplifies the mathematics somewhat and is more amenable to analytic solution is desirable. Here, we examine a direction of simplification that reduces the system of equations for one-dimensional flow to a system of ordinary differential equations, by introduction of a constraint that satisfies the initial and wall conditions, as discussed by Makino.

1*

Makino and Shear 2 have obtained a theory of reflected impulse at the wall by regarding each element of the incident wave to be individually reflected like the shock front, but this is a zero'th order approximation, not satisfying derivative conditions at the wall. Chang and Laporte have obtained two theories of shock reflection. One is series expansion about the point of reflection, which, if truncated for practical purposes, may not fully satisfy the wall conditions. The other theory, which assumes the particle velocity to be zero all along the reflected shock line, may also not fully satisfy the wall conditions. Also, both theories are for the calculation of the reflected shock line only. In the theory we present here, we consider calculation of the entire reflected wave zone, from the shock front through interior points to points on the wall, such that wall conditions are satisfied through certain derivatives. However, it is probably most useful only in that phase of the wave exerting the greatest stress on the wall, which is the part of greatest interest for damage studies.

Superscript numbers denote references which may be found on page 26.

Ryzhov and Khristianovich have developed a theory on the problem of two dimensional regular reflection, but the theory assumes isentropic flow and is therefore applicable to weak shocks only, and further, the boundary conditions are approximated. Shindiapin has improved the theory with respect to boundary conditions, but has not extended the theory to non-isentropic flow.

While the so-called self-similar type solutions ^{6,7} can be extended to the reflection problem as an approximation, the choice of the similarity form to be assumed is made difficult by the strong influence of the wall and by the non-constancy of the quantities in front of the reflected shock.

The example considered here is for plane flow, or spherical flow at distances sufficiently far from the center of energy release that planar approximation suffices. It is shown how the flow parameters behind the reflected wave, in particular the pressure on the wall as a function of time and the impulse, can be obtained. For cylindrical and spherical flows, the same method is applicable if the reflecting surfaces have the corresponding symmetries.

FLOW EQUATIONS

The non-dimensionalized equations of flow describing the one-dimensional motion of air are, in Eulerian coordinates, 8 conservation of mass

(1a)
$$p_t + up_x + \rho c^2 u_x = 0$$
,

conservation of momentum

(1b)
$$\frac{1}{0} p_x + u_t + uu_x = 0$$
,

adiabaticity

(1e)
$$S_t + uS_x = 0,$$

where t is the time with the non-dimensionalizing scaling factor (ambient sound speed times ambient pressure/mass of explosive) $^{1/3}$, x is the distance with the non-dimensionalizing scaling factor (ambient pressure/(ambient sound speed) 2 /mass of explosive) $^{1/3}$, p is the pressure in units of the ambient pressure, u is the particle velocity in units of the ambient sound speed, c is the sound velocity in units of the ambient sound speed, p is the specific heat ratio Y (assumed constant) times the density in units of the ambient density, and S is the excess entropy over the ambient in units of the gas constant R.

This system of equations is supplemented by the equation of state, which, for illustrative purpose, we assume to be ideal:

(2a)
$$\rho = \gamma p^{1/\gamma} \exp \left(-\frac{\gamma - 1}{\gamma} S\right),$$

(2b)
$$E = \frac{1}{\gamma - 1} \frac{p}{\rho} - \frac{1}{\gamma(\gamma - 1)}$$
,

where E is the non-dimensionalized energy.

The Eulerian coordinates x, t in the equations above are replaced by Lagrange coordinates. We define m to be the mass integral

$$m = \int \rho(x,t) dx,$$

where the integration is performed on a constant t line starting from the wall. From this definition and from the continuity Equation (la) in the form

$$\rho_{t} = -(\rho u)_{x},$$

we obtain

$$m_{\mathbf{x}} = \rho ,$$

$$m_{t} = -\rho u ,$$

and also

$$x_{t}(m,t) = u.$$

Using Equations (5) and (2), we put Equation (1) in the form

where $V \equiv \text{col} \parallel S_t$, p_t , u_t , u_m , p_m , $S_m \parallel$.

Differentiation of Equation (7) with respect to m and t gives

where

(9)
$$W \equiv \text{col} \parallel p_{\text{mt}}, p_{\text{tt}}, u_{\text{mt}}, u_{\text{tt}}, p_{\text{mm}}, u_{\text{mm}}, s_{\text{mm}}, s_{\text{mt}}, s_{\text{tt}} \parallel .$$

SHOCK CONDITIONS

The Rankine-Hugoniot conditions that must be satisfied across the shock front are, 7 in dimensionless form, conservation of mass,

(10a)
$$\rho(U - u) = \rho_0(U - u_0),$$

conservation of momentum,

(10b)
$$\rho(U - u)^{2} + p = \rho_{o}(U - u_{o})^{2} + p_{o},$$

conservation of energy,

(10c)
$$\frac{1}{2}(U - u)^2 + E + \frac{p}{\rho} = \frac{1}{2}(U - u_0)^2 + E_0 + \frac{p_0}{\rho_0},$$

where U is the shock velocity $\frac{dx}{dt}$.

These conditions simplified by Equation (2) give

(11a)
$$u = u(p; u_0, p_0, S_0) = u_0$$

+
$$(p - p_0) \left[\frac{2}{\gamma(\gamma + 1)} \frac{\exp(\frac{\gamma - 1}{\gamma} s_0)}{p_0^{1/\gamma}(p + \mu^2 p_0)} \right]^{1/2}$$
,

(11b)
$$S = S(p; u_o, p_o, S_o) = S_o$$

$$+\frac{\gamma}{\gamma-1} \ln(\frac{p}{p_0})^{1/\gamma} \left(\frac{\mu^2 p + p_0}{p + \mu^2 p_0}\right)$$
,

(11c)
$$U = U(p; u_0, p_0, S_0) = u_0$$

+
$$\left[\frac{(p + \mu^2 p_0) \exp(\frac{\gamma - 1}{\gamma} s_0)}{(1 - \mu^2) p_0^{1/\gamma}}\right]^{1/2}$$
.

Let $D=\frac{\partial}{\partial t}+\rho(U-u)\,\frac{\partial}{\partial m}$ be the differential operator in the direction of the shock line. Implicit differentiation of u and S along the reflected shock line gives

$$-\frac{\partial u}{\partial p} p_{t} + u_{t} + \rho(U - u)u_{m} - \rho(U - u)\frac{\partial u}{\partial p} p_{m} = F_{1},$$
(12a)
$$F_{1} = \frac{\partial u}{\partial p_{o}} Dp_{o} + \frac{\partial u}{\partial u_{o}} Du_{o} + \frac{\partial u}{\partial S_{o}} DS_{o},$$

$$-\frac{\partial S}{\partial p} p_{t} - \rho(U - u) \frac{\partial S}{\partial p} p_{m} + \rho(U - u)S_{m} = F_{2} ,$$

$$(12b)$$

$$F_{2} = \frac{\partial S}{\partial p_{o}} Dp_{o} + \frac{\partial S}{\partial u_{o}} Du_{o} + \frac{\partial S}{\partial S_{o}} DS_{o} ,$$

where the shock path is given by

$$Dm = \rho(U - u) .$$

The quantities, identified by subscript o, that result from the incident wave we assume to be known as functions of m and t. From Equation (11), the first partial derivatives with respect to the arguments p, u_0 , p_0 , s_0 , become

(14a)
$$\frac{\partial u}{\partial p} = \frac{(u - u_o)}{(p - p_o)} \frac{\left[p + (1 + 2\mu^2)p_o\right]}{2(p + \mu^2p_o)},$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{u}} = \mathbf{1} ,$$

(14c)
$$\frac{\partial u}{\partial S_{o}} = \frac{\gamma - 1}{2\gamma} (u - u_{o}) ,$$

(14d)
$$\frac{\partial u}{\partial p_o} = \frac{-(u - u_o) \left[p^2 + (3\gamma - 2)pp_o + (\gamma - 1)\mu^2 p_o^2\right]}{2\gamma p_o (p - p_o)(p + \mu^2 p_o)},$$

(14e)
$$\frac{\partial S}{\partial p} = \frac{1}{\gamma + 1} \frac{(p - p_0)^2}{p(p + \mu^2 p_0)(\mu^2 p + p_0)},$$

$$\frac{\partial S}{\partial u_{O}} = 0 ,$$

$$\frac{\partial S}{\partial S_{O}} = 1 ,$$

(14h)
$$\frac{\partial S}{\partial p_{o}} = \frac{-1}{\gamma + 1} \frac{(p - p_{o})^{2}}{p_{o}(p + \mu^{2}p_{o})(\mu^{2}p + p_{o})}.$$

CONSTRAINTS

For simplicity, it is assumed that the reflecting wall is at m=x=0 (see Figure). At the wall the particle velocity must satisfy the conditions

(15)
$$\left(\frac{\partial^n u(x,t)}{\partial t^n}\right)_{x=0} = 0, \quad n = 0, 1, 2, \dots$$

From this result and the ideal gas law (2a), we can show by taking higher derivatives of (la) and (lb) that u must satisfy also the condition

$$\left(\frac{\partial^2 u(x,t)}{\partial x^2}\right)_{x=0} = 0.$$

We now impose some constraints on the flow. There is an infinity of ways of doing this. The choice will depend on the nature of the ambient conditions and the incident wave. For blast waves in still air, in the neighborhood of the wall at all times and also in the neighborhood of the asymptotic shock, we expect the particle velocity to vary slowly with x, and so we choose

(17)
$$u = a(t)x + b(t)x^3$$
,

where a(t) and b(t) are functions of t only. This expression satisfies both boundary conditions (15) and (16), and also permits the initial and shock conditions to be satisfied.

For subsequent purpose, we differentiate Equation (17) twice with respect to m:

$$u_{m} = \frac{u + 2bx^{3}}{\rho x},$$

(18b)
$$u_{mm} = \frac{6bx}{\rho^2} - \frac{u_m}{\gamma p} [p_m - (\gamma - 1) ps_m].$$

DETERMINATION OF REFLECTION DOMAIN

Equations (18a), (12), and (7) are six equations involving the six components of V. Solving for V, we obtain

$$- H\{\rho(U - u)\frac{\partial u}{\partial p} + 1\}$$

$$-G - H \frac{\partial u}{\partial p}$$

$$\frac{H}{\gamma p \rho} \{\rho(U - u)\frac{\partial u}{\partial p} + 1\}$$

$$G + H \frac{\partial u}{\partial p}$$

$$\frac{1}{\rho(U - u)} \left[F_2 + \frac{\partial S}{\partial p} \left\{G\rho(U - u) - H\right\}\right]$$

where

$$G = \frac{(u + 2bx^{3})(U - u) - xF_{1}}{x\{\rho(U - u)\frac{\partial u}{\partial p} + 1\}},$$

$$H = \frac{\gamma p(u + 2bx^3)}{x\{\rho(U - u)\frac{\partial u}{\partial p} + 1\}}.$$

By differentiating Equation (12) along the reflected shock line, we have

(20a)
$$-2\frac{\partial u}{\partial p} \rho(U - u) p_{mt} - \frac{\partial u}{\partial p} p_{tt} + 2\rho(U - u) u_{mt}$$

$$+ u_{tt} - \rho^2(U - u)^2 \frac{\partial u}{\partial p} p_{mm} + \rho^2(U - u)^2 u_{mm} = F_3 ,$$

$$(20b) \qquad -2\frac{\partial S}{\partial p} \rho(U-u) p_{mt} - \frac{\partial S}{\partial p} p_{tt} - \frac{\partial S}{\partial p} \rho^2 (U-u)^2 p_{mm}$$
$$+ \rho^2 (U-u)^2 S_{mm} = F_4 ,$$

where

(21a)
$$F_{3} = DF_{1} + Dp D\left[\frac{\partial u}{\partial p}\right] - \left[u_{m} - p_{m} \frac{\partial u}{\partial p}\right] D \left[\rho(U - u)\right],$$

(21b)
$$F_{\downarrow} = DF_2 + \left[\frac{\partial S}{\partial p} p_m - S_m\right] D \left[\rho(U - u)\right] + Dp \left[\frac{\partial S}{\partial p}\right].$$

Equations (20), (18b), and (8) are nine equations involving the nine components of W. Solving for W gives

$$W = B^{-1} Y,$$

where

$$\frac{\gamma + 1}{\gamma} p_{t} \left(\frac{p_{m}}{p} - \mu^{2} S_{m}\right)$$

$$\frac{\gamma + 1}{\gamma} \frac{p_{t}^{2}}{p}$$

$$0$$

$$F_{3}$$

$$\frac{6bx}{\rho^{2}} - \frac{\gamma + 1}{\gamma} u_{m} \left(\frac{1}{\gamma + 1} \frac{p_{m}}{p} - \mu^{2} S_{m}\right)$$

$$\frac{\pi}{4}$$

$$0$$

(23b)
$$B^{-1} = \begin{vmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{vmatrix},$$

(23c)
$$\xi = \left[\rho(U - u)^2 + \gamma p\right] \frac{\partial u}{\partial p} + 2(U - u) ,$$

(23d)
$$B_{11} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\gamma p \left[2\rho(U-u) \frac{\partial u}{\partial p} + 1 \right] & \rho(U-u)^2 \frac{\partial u}{\partial p} + 2(U-u) & -\gamma p \rho^2 (U-u)^2 \frac{\partial u}{\partial p} & \gamma p \\ \frac{2\rho(U-u)\frac{\partial u}{\partial p} + 1}{\rho \xi} & \frac{1}{\rho \xi} (\frac{\partial u}{\partial p}) & \frac{\rho(U-u)^2 \frac{\partial u}{\partial p}}{\xi} & -\frac{1}{\rho \xi} \\ -1 & 0 & 0 & 1 \end{pmatrix},$$

(23e)
$$B_{12} = \begin{bmatrix} 0 & -\gamma p \rho & 0 & 0 & 0 \\ -\frac{\gamma p}{\xi} & \frac{\gamma p \rho \left[\rho (U - u)^2 + \gamma p + 2\gamma p \rho (U - u) \frac{\partial u}{\partial p} \right]}{\xi} & 0 & 0 & 0 \\ -\frac{1}{\rho \xi} & -\frac{\left[\rho (U - u)^2 + \gamma p + 2\gamma p \rho (U - u) \frac{\partial u}{\partial p} \right]}{\xi} & 0 & 0 & 0 \\ 0 & \gamma p \rho & 0 & 0 & 0 \end{bmatrix},$$

Solving Equation (18a) for b(t), there is obtained

(24)
$$b(t) = \frac{\rho x u_m - u}{2x^3}.$$

Differentiating this expression with respect to t along the reflected shock line, there follows

(25)
$$Db = \left(\frac{\rho \times u_m - u}{2x^3}\right)_t + \rho \left(U - u\right) \left(\frac{\rho \times u_m - u}{2x^3}\right)_m = F_5,$$

Equations (2a), (11), (13), (25), together with the implicit derivative

(26)
$$Dp = p_t + \rho(U - u) p_m$$
,

give the system of ordinary differential equations

Using (19) and (22), we can solve this system.

The solutions of this system give b(t) as a function of time; a(t) is then determined by

(28)
$$a(t) = \frac{u - b(t)x^{3}}{x}.$$

The flow behind the reflected shock can now be calculated as solutions of ordinary differential equations, with each point on the calculated shock line serving as an initial point. x is given by

(29)
$$x_t = u = a(t)x + b(t)x^3$$
,

which integrates along the m = constant line into

$$x = x(m) \exp \left\{ \int_{t(m)}^{t} a(t)dt \right\} \left[-\int_{t(m)}^{t} 2x^{2}(m)b(t) \right]$$

$$\exp \left\{ \int_{t(m)}^{t} 2a(\tau)d\tau \right\} dt + 1 \right]^{-1/2},$$

where x(m), t(m) is a point on the shock line. This value of x substituted into Equation (29) gives u as a function of m, t. The pressure is then obtained from Equation (7):

(31)
$$p_t = -\gamma p \rho u_m = -\gamma p [a(t) + 3b(t)x^2]$$
,

which integrates into

(32)
$$p = p(m) \exp \left\{ -\int_{t(m)}^{t} \gamma[a(t) + 3b(t)x^2]dt \right\}.$$

On this m = constant line, the entropy S = S(m) is constant and is given on the shock line. The density then follows from Equation (2).

On the wall the pressure simplifies to

(33)
$$p(0,t) = p(0) \exp \left\{ -\int_{t(0)}^{t} \gamma a(t) dt \right\}.$$

The positive impulse imparted to the wall we take to be

(34) Pos. impulse =
$$\int_{t(0)}^{\overline{t}} \gamma \left[p(0) \exp \left\{ - \int_{t(0)}^{t} a(t) dt \right\} - 1 \right] dt$$
,

where \overline{t} is the time at which p(0,t) = 1.

RALPH E. SHEAR

RAY C. MAKINO

REFERENCES

- 1. Makino, R. C. Ballistic Research Laboratories Memorandum Keport No. 1034, February 1956.
- 2. Makino, R. C. and Shear, R. E. Ballistic Research Laboratories Technical Note No. 1010, May 1955.
- 3. Chang, T. S. and Laporte, O. Phys. Fluids 7, 1225, 1964.
- 4. Ryzhov, O. S. and Khristianovich, S. A. J. of Appl. Math. and Mech. (PMM), 22, 826, 1958.
- 5. Shindiapin, G. P. J. of Appl. Math. and Mech. (PMM), 29, 121, 1966.
- 6. Taylor, G. I. Proc. Roy. Soc. (London) <u>A201</u>, 159, 1950. Also MHS Report RC-210, England, 1941.
- 7. Sedov, L. I. Prinkl. Math. Mekh. <u>10</u>, 241, 1946.
- 8. Courant, R. and Friedrichs, K. O. Supersonic Flow and Shock Waves (Interscience Publishers, N.Y., 1948), p. 14.
- 9. See page 123 of Reference 8.

No. of		No. of Copies	
20	Commander Defense Documentation Center ATTN: TIPCR Cameron Station Alexandria, Virginia 22314	1	Commanding General U.S. Army Combat Developments Command ATTN: COR for CORG Fort Belvoir, Virginia 22060
1	Director of Defense Research and Engineering (OSD) ATTN: Asst Dir/Tac Msl & Ord Washington, D.C. 20301	1	Director U.S. Army Research Office ATTN: CRDPES 3045 Columbia Pike Arlington, Virginia 22204
1	Director Weapons Systems Evaluation Group Washington, D.C. 20305	1	Chief of Naval Operations ATTN: Op-03EG Department of the Navy Washington, D.C. 20350
1	Headquarters Defense Atomic Support Agency ATTN: STBS, Mr. J. Kelso Washington, D.C. 20301	3	Commander U.S. Naval Air Systems Command Headquarters ATTN: AIR-604
1	Commanding General U.S. Army Materiel Command ATTN: AMCRD-TE Washington, D.C. 20315	1	Washington, D.C. 20360 Commanding Officer U.S. Naval Air Development Center, Johnsville
1	Commanding Officer U.S. Army Engineer Research & Development Laboratories ATTN: STINFO Div Fort Belvoir, Virginia 22060	3	Warminister, Pennsylvania 18974 Commander U.S. Naval Ordnance Laboratory ATTN: Explo Rsch Dept
1	Commanding Officer U.S. Army Frankford Arsenal ATTN: Lib Br, 0270 Philadelphia, Pennsylvania 19137		Mr. P. Hanlon Mr. W. Filler Dr. L. Rudlin Silver Spring, Maryland 20910
2	Commanding Officer U.S. Army Picatinny Arsenal ATTN: SMUPA-V SMUPA-DK Dover, New Jersey 07801	1	Commanding Officer U.S. Naval Ordnance Laboratory ATTN: Lib Corona, California 91720

No. of		No. of	
Copies	Organization	Copies	Organization
	Commander U.S. Naval Ordnance Test Station ATTN: Code 753 (2 cys) Code 4541	1	FTD (TD) Wright-Patterson AFB Ohio 45433 Director
	China Lake, California 93557	1	Environmental Science Services Administration ATTN: Code R, Dr. J. Rinehart
2	Commander U.S. Naval Weapons Laboratory Dahlgren, Virginia 22448		U.S. Department of Commerce Boulder, Colorado 80302
3	HQ USAF (AFXPD; AFGOA; AFRDQ) Washington, D.C. 20330	3	Director Lawrence Radiation Laboratory University of California ATTN: Mr. B. Crowley Dr. G. Dorough
2	AFSC (SCTN) Andrews AFB Washington, D.C. 20331		Dr. S. Fernbach P.O. Box 808 Livermore, California 94551
1	AEDC (AEOI) Arnold AFS Tennessee 37389	4	Director Los Alamos Scientific Laboratory University of California P.O. Box 1663
1	APGC (PGOW) Eglin AFB Florida 32542	1	Los Alamos, New Mexico 87544 Director NASA Scientific and Technical
2	AFCRD (CRRDM) L. G. Hanscom Fld Bedford, Massachusetts 01731		Information Facility ATTN: SAK/DL P.O. Box 33 College Park, Maryland 20740
2	AUL (3T-AUL-60-118) Maxwell AFB Alabama 36112	1	Director National Aeronautics and Space Administration
1	BSD Norton AFB California 92309		Langley Research Center ATTN: Mr. Pierce Langley Station Hampton, Virginia 23365
2	AFML (MAY) Wright-Patterson AFB Ohio 45433		

No. Copi		No. of Copies	
2	President Research Analysis Corporation ATTN: Lib McLean, Virginia 22101	2	Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139
1	Director Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland 2091	2	The Pennsylvania State University Department of Engineering Mechanics ATTN: Professor N. Davids Professor P. S. Theocaris
1	The Rand Corporation 1700 Main Street Santa Monica, California		University Park, Pennsylvania 16802
	90401	1	Purdue University Statistical Laboratory
1	Sandia Corporation P.O. Box 5800 Albuquerque, New Mexico 87115	5	ATTN: Lib Lafayette, Indiana 47907
1	California Institute of Technology Aeronautics Department	1	Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025
	ATTN: Professor H. Leipmann Pasadena, California 91102	2	Stevens Institute of Technology Davidson Laboratory ATTN: Lib
1	Cornell Aeronautical Laborator Inc. ATTN: Library	ŗy	Castle Point Station Hoboken, New Jersey 07030
	P.O. Box 235 Buffalo, New York 14221	1	University of Michigan Department of Engineering ATTN: Lib
1	IIT Research Institute ATTN: Lib		Ann Arbor, Michigan 48104
	10 West 35th Street Chicago, Illinois 60616	1	University of Utah Institute of Rate Processes ATTN: Lib
1	The Johns Hopkins University Institute for Cooperative		Salt Lake City, Utah 84112
	Research Ballistic Analysis Laboratory 3506 Greenway Baltimore, Maryland 21218	1	Professor K. O. Friedrichs Applied Mathematics Panel New York University New York, New York 10053

No. o		No. of Copies Organization	
1	Professor M. Holt Graduate Division of Applied Mathematics Brown University Providence, Rhode Island 02912	1 Dr. P. Richards Technical Operations Resear South Avenue Burlington, Massachusetts 01801	rch
1	Professor G. B. Whitham Institute of Mathematical Sciences New York University 25 Waverly Place	 Mr. R. T. Bodurtha E. I. DuPont de Nemours and Company, Inc. 10th & Market Streets Wilmington, Delaware 19898 	
1	New York, New York 10003 Dr. W. Bleakney Palmer Physical Laboratory Princeton University Princeton, New Jersey 08540	<pre>1 Mr. R. McAlevy Forrestal Research Center Department of Aeronautical Engineering Princeton University Princeton, New Jersey 0854</pre>	40
1	Dr. S. R. Brinkley Combustion and Explosives Research, Inc. 1007 Oliver Building Pittsburgh, Pennsylvania 15222	Aberdeen Proving Ground Ch, Tech Lib Air Force Ln Ofc Marine Corps Ln Ofc Navy Ln Ofc CDC Ln Ofc	. •

Security Classification			
DOCUMENT CONT			
(Security classification of title, body of abstract and indexing	annotation must be		
I. ORIGINATING ACTIVITY (Cosporate author)		t	CURITY CLASSIFICATION
U.S. Army Ballistic Research Laboratories		Unclass	ified
Aberdeen Proving Ground, Maryland		26 GROUP	
3. REPORT TITLE			
A NOVI TITTAD GROOM MARTE DEDITION TO THE ONLY			
A NON-LINEAR SHOCK WAVE REFLECTION THEORY			
4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)			
d. Seserie (172 No 125 (2) po or repair and menasivo dates)			
5. AUTHOR(S) (First name, middle intilat, fast name)			
Shear, R. E. and Makino, Ray C.			
6. REPORT DATE	Tan		Total Control of the
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	78. TOTAL NO O	FAGES	7b. NO OF KEFS
January 1967	30		8
SE, CONTRACT OR GRANT NO.	94. ORIGINATOR	REPORT NUM	BER(5)
6. PROJECT NO. RDT&E 1P014501A14B	Report No	. 1351	
6. PROJECT NO. NDI WE IPOL4 JULA 14D			
c.	9b. OTHER REPO	RT HO(\$) (Any of	ther numbers that may be assigned
d.			
10. DISTRIBUTION STATEMENT			
Distribution of this document is unlimited			
	. •		
11. SUPPLEMENTARY NOTES	12. SPONSORING		
	U.S. Arm	y Materiel	Command
	Washingt	on, D.C.	
13. ABSTRACT	.1		
A and dimensional there are second as			
A one-dimensional theory of normal reflect			
given. The method satisfies the initial a			
is shown how the entire reflected wave zon			cted shock front and
the pressure and impulse on the wall, can	be calculate	d,	

Unclassified

Security Classification

Shock Reflection Shock Interaction Blast Wave Reflection Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow Impulse On Wall	K C
Shock Reflection Shock Interaction Blast Wave Reflection Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	wT
Shock Reflection Shock Interaction Blast Wave Reflection Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	
Shock Interaction Blast Wave Reflection Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	1
Blast Wave Reflection Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	
Blast Wave Reflection Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	İ
Pressure And Impulse On Wall Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	ļ
Blast Load On Structures Fluid Flow Partial Differential Equations Air Flow	j
Fluid Flow Partial Differential Equations Air Flow	
Partial Differential Equations Air Flow	İ
Air Flow	
	į i
Impulse On Wall	
	İ
	ļ
	l
]

Unclassified

Security Classification